Crystal Structure

Communications

ISSN 0108-2701

A new packing variant of catena-poly[[aquachlorocopper(II)]- μ-pyra-zine-2-carboxylato- $\left.O, N: N^{\prime}\right]$

Karen J. Nordell, ${ }^{\text {a }}{ }^{*}$ Dana S. Kass ${ }^{\text {a }}$ and Mark D. Smith ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Lawrence University, Appleton, WI 54912, USA, and
${ }^{\mathbf{b}}$ Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
Correspondence e-mail: karen.nordell@lawrence.edu

Received 1 August 2001
Accepted 7 September 2001
Single crystals of the title coordination polymer, $\left[\mathrm{CuCl}\left(\mathrm{C}_{5} \mathrm{H}_{3}-\right.\right.$ $\left.\mathrm{N}_{2} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)$], have been prepared by hydrothermal synthesis. The compound is composed of infinite one-dimensional chains of pseudo-square-pyramidal $\mathrm{Cu}^{\mathrm{II}}$ ions connected via pyrazine-2-carboxylate ligands. A network of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding between adjacent chains is responsible for a bilayer structure different from the previously reported polymorph.

Comment

Pyrazine-2-carboxylate (hereinafter pyzca) complexes of copper(II) (Klein et al., 1982) have recently been used to construct several novel mixed-metal and mixed-valent coordination polymers (Dong et al., 2000; Zheng et al., 2000). The attractiveness of this complex as a 'metal-containing building block' for the construction of novel framework materials of varying dimensionality lies in its donor-acceptor versatility. Chelation of the $\mathrm{Cu}^{\text {II }}$ center by two pyrazine-2-carboxylate ligands leaves two para- N -donors and two free carboxylate O atoms available for intermolecular bonding and supramolecular interactions. Since this complex often forms as a diaqua complex, structural diversity through hydrogen-bonding interactions is also possible. Investigation of the hydrothermal reactivity of $\left[\mathrm{Cu}(\mathrm{pyzca})_{2}\right]$ with various metal salts has led to the formation of a new polymorph of $\left[\mathrm{CuCl}(\right.$ pyzca $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, (I), the structure of which is reported here.

(I)

The structure of (I) consists of one-dimensional chains of $\mathrm{Cu}^{\text {II }}$ centers connected through pyzca ligands (Fig. 1). The Cu^{2+} ion resides in a pseudo-square-pyramidal coordination environment. An O and an N atom from the chelating end of a
pyzca ligand, a para N atom from a symmetry-equivalent pyzca ligand (symmetry code: $x,-y, z-\frac{1}{2}$) and a Cl ligand form the base of the pyramid. A water molecule occupies the apical site. The distortion from ideal square-pyramidal geometry is due primarily to the larger size of the Cl ligand.

Figure 1
A view of (I) showing the one-dimensional chains and the atomnumbering scheme in one repeat unit. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Compound (I) is a polymorph of the structure reported by Goher et al. (1998). The central structural unit of both compounds, viz. the one-dimensional chains, is virtually identical. The two structures differ in the pattern of hydrogen bonding linking the chains. In (I), the chains assemble into bilayers parallel to the crystallographic $b c$ plane. The water ligands in (I) point toward the bilayer interior and form a hydrogen-bonding network involving an unchelated carboxylate O atom $(\mathrm{O} 3-\mathrm{H} 3 W A \cdots \mathrm{O} 2)$ and a carboxylate O atom bound to $\mathrm{Cu}(\mathrm{O} 3-\mathrm{H} 3 W B \cdots \mathrm{O} 1)$ (Table 2). Each water molecule is linked to two neighboring chains in this fashion. The Cl ligands protrude outward from the bilayers, which then stack in a centrosymmetric fashion along [001] (Fig. 2).

Figure 2
A view of the packing of the double layers in (I) along [010]. Intralayer hydrogen bonds are shown as dashed lines.

The structure reported by Goher et al. (1998) was crystallized in low (15%) yield by the ambient-temperature evaporation of a $2: 1$ ethanol-water solution. Due to the noncentrosymmetric stacking of individual chains, each water ligand forms hydrogen bonds to two neighboring chains through a Cl ligand and an unchelated carboxylate O atom of a pyzca ligand, rather than through an exclusively $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ network, as in (I). Interestingly, although much harsher hydrothermal reaction conditions in pure water produced (I) rather than the previous structure, (I) is in fact isostructural with the azide analog $\left[\mathrm{Cu}^{\mathrm{II}}\left(\mathrm{N}_{3}\right)\right.$ (pyrazine-2-carboxylato)$\left(\mathrm{H}_{2} \mathrm{O}\right)$], also obtained by Goher et al. (1998) by evaporation at room temperature.

Experimental

The title compound was prepared by the hydrothermal reaction of $\mathrm{Cu}^{\text {II }}$ (pyrazine-2-carboxylate) $)_{2}(0.0276 \mathrm{~g}, 0.1 \mathrm{mmol})$ with $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ $(0.0275 \mathrm{~g}, 0.2 \mathrm{mmol})$ in water $(0.8 \mathrm{ml})$ in an evacuated sealed Pyrex tube. The mixture was heated to 403 K at $1 \mathrm{~K} \mathrm{~min}^{-1}$ and held at that temperature for 24 h before cooling slowly ($0.5 \mathrm{~K} \mathrm{~min}^{-1}$) to room temperature. The reaction yielded abundant dark-blue-green crystals of (I).

Crystal data

$\left[\mathrm{CuCl}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=240.10$
Monoclinic, $C 2 / c$
$a=18.8435$ (17) \AA
$b=6.2038$ (6) \AA 。
$c=13.4129(12) \AA$
$\beta=105.534(2)^{\circ}$
$V=1510.7(2) \AA^{3}$
$Z=8$
$D_{x}=2.111 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3228 reflections
$\theta=3.2-26.3^{\circ}$
$\mu=3.21 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Fragment, blue green
$0.30 \times 0.22 \times 0.16 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1999)
$T_{\text {min }}=0.449, T_{\text {max }}=0.599$
4831 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.063$
$S=1.00$
1547 reflections
117 parameters

1547 independent reflections
1323 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-23 \rightarrow 22$
$k=-7 \rightarrow 7$
$l=-16 \rightarrow 16$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0358 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.42 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.41 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

$\mathrm{Cu}-\mathrm{O} 1$	$1.9762(17)$	$\mathrm{Cu}-\mathrm{Cl}$	$2.2245(7)$
$\mathrm{Cu}-\mathrm{N} 1$	$2.0095(19)$	$\mathrm{Cu}-\mathrm{O} 3$	$2.192(2)$
$\mathrm{Cu}-\mathrm{N} 2^{\mathrm{i}}$	$2.0151(19)$		
			$96.06(8)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 1$	$81.81(7)$	$\mathrm{N}^{\mathrm{i}}-\mathrm{Cu}-\mathrm{O} 3$	$164.09(6)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 2^{\mathrm{i}}$	$88.54(8)$	$\mathrm{O} 1-\mathrm{Cu}-\mathrm{Cl}$	$95.19(6)$
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 2^{\mathrm{i}}$	$167.67(9)$	$\mathrm{N} 1-\mathrm{Cu}-\mathrm{Cl}$	$92.00(6)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 3$	$91.54(9)$	$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Cu}-\mathrm{Cl}$	$104.20(7)$
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{O} 3$	$91.87(8)$	$\mathrm{O} 3-\mathrm{Cu}-\mathrm{Cl}$	

[^0]Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2}-\mathrm{H} 3 W A \cdots \mathrm{O}^{2 \mathrm{ii}}$	$0.79(2)$	$1.98(2)$	$2.752(3)$	$166(3)$
O3-H3WB $^{1 \mathrm{Hii}}$	$0.79(2)$	$2.03(2)$	$2.821(3)$	$174(3)$

Symmetry codes: (ii) $x, 1+y, z$; (iii) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$.

All H atoms could be located in the Fourier difference maps. Those bound to C atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=$ $0.93 \AA$) and given $U_{\text {iso }}$ values 1.2 times those of the parent C atom. Water H atoms were refined isotropically, subject to a distance restraint of $\mathrm{O}-\mathrm{H}=0.8 \AA$.

Data collection: SMART-NT (Bruker, 1999); cell refinement: SAINT-Plus-NT (Bruker, 1999); data reduction: SAINT-Plus-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Funding was provided by Lawrence University and by the National Science Foundation through grant DMR:9873570. The Bruker SMART APEX diffractometer was purchased using funds provided by the NSF IMR Program through grant DMR:9975623.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1345). Services for accessing these data are described at the back of the journal.

References

Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SMART-NT (Version 5.624), SAINT-Plus-NT (Version 6.02a) and $S A D A B S$. Bruker AXS Inc., Madison, Wisconsin, USA.
Dong, Y.-B., Smith, M. D. \& zur Loye, H.-C. (2000). Solid State Sci. 2, 335-341.
Goher, M. A. S., Abu-Youssef, M. A. M. \& Mautner, F. A. (1998). Polyhedron, 17, 3305-3314.
Klein, C. L., Majeste, R. J., Trefonas, L. M. \& O’Connor, C. J. (1982). Inorg. Chem. 21, 1891-1897.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zheng, L.-M., Wang, X. \& Jacobson, A. J. (2000). J. Solid State Chem. 152, 174 201.

[^0]: Symmetry code: (i) $x, 1-y, z-\frac{1}{2}$.

